

FOUR SEAS CONFERENCE ISTANBUL 2004

The CMS muon system

L. Litov CERN & University of Sofia

L. Litov

CMS Muon System

System Conditions & Requirements	
System Conditions	Requirements
Barel η < 1.3 Particle rates < 10 Hz/cm ² Low Magnetic field	 Muon identification Muon Trigger Unambiguous BX identification Trigger single and multimuon with well defined pt thresholds few GeV to 100 GeV
Endcap 0.9 < η < 2.4 Particle rates 100-1000 Hz/cm ² Magnetic field Uniform axial > 3 T in ME1/1 Highly non-uniform radial field Up to 1 T in ME1/2	 Muon momentum measurement Charge assignment correct to 99% confidence level up to 7 TeV Momentum resolution Stand alone dpt/pt = 8 - 15% at pt = 10 GeV dpt/pt = 20 - 40% at pt = 1 TeV Global dpt/pt = 1 - 1.5% at pt = 10 GeV
L. Litov CMS Mu	dpt/pt = 6 - 17% at pt = 1 TeV

Drift tube chambers

Barrel Drift tube chambers

L. Litov

Barrel Muon DT

CMS Muon System

DT Production Sites

I Constant

AACHEN

TORINO

CIEMAT

LEGNARO

DT Assembly

Plates with strip electrodes
Catode I beams
Wires and wire fixation pieces
Corner blocks and frames

System

L. Litov

CMS Muon System

Minicrate (TE)

CMS Muon System

ISR Chamber preparation

DT chambers are sent to the ISR for full tests

1.Acceptance tests: HV, Leakrate, noise, cosmics

2.DT alignment calibration

3.DT cabling+services

4.DT assembly with RPCs

Storage in transport frames

CMS Muon System

CMS Endcap Muon Detector

Cathode Strip Chambers

Cathode Strip Chambers (CSC)

Strips

Wires

CSC Local Trigger

Cathode trigger – Optimized to measure Φ precisely By combining 6 layers (1 chamber) $\rightarrow 0.15$ –strip ~1,2 mm

Anode trigger – Optimized to efficient BX identification

For each spatial pattern a low level coincidence (≥ 2 layers) is used to establish timing

A higher level coincidence

 $(\geq 4 \text{ layers})$ is required to establish a muon track

ALCT+CLCT → Time + Location+Angle are send to CSC Track Finder

Track Finder =reconstruct tracks using 3-D spatial information Assigns pt, Φ and η **Select the 4 highest quolity candidates** and sends them to the **Global Muon Trigger**

L. Litov

CSC Production

CSC production sites

Chamber with on-board electronics

Dubna – 72 assembled

ISR FAST Site

Final Testing before installation at SX5

L. Litov

CMS Muon System

CSC Installation

L. Litov

CMS Muon System

Istanbul, September 2004

Readout cables & Walkway

CMS Muon System

Chamber commissioning at SX5

<u>Commissioning of CSCs+on</u> <u>chamber electronics</u> follows <u>installation</u>

Use a subset of FAST site tests

Some additional tests: e.g. skew-clear cable delays, long term tests under

L. Litov

CMS Muon System

Resistive Plate Chambers (RPC)

Resistive Plate Chambers

L. Litov

CMS Muon System

Resistive Plate Chambers

Resistive Plates – bakelite with bulk resistivity $(2 \pm 1).10^{10}\Omega$ cm Gas gap ($2mm \pm 20\mu m$ wide) Gas mixture, containing 96% $C_2H_2F_4$ (Freon), 3,5% isobutan, $SF_6 - 0.5\%$ Graphite electrodes with resistivity $300 \text{ k}\Omega / \text{ cm}$ **Insulating PET film (0.3 mm thick) Detecting copper strips** 40µm thick,2–4 cm wide and 1250 mm long

Spacers (cylinders with diameter 10 mm and height 2mm) Copper shielding Linseed oil treatment

CMS RPC

Fast detectors for the first level trigger of the experiment Considerably good space resolution Able to work in areas with background ~ 10³ Hz/cm² Price – as low as possible

Requirements

Time resolution ≤ 1.8 ns (98 % within 20 ns) Efficiency > 95 % Rate capability ≤ 1kHz/cm2

Average cluster size < 2 strips
Number of streamers < 10%
Operation plateau > 300V
Power consumption 2-3 W/m²
Operational voltage 8.5 –10 kV

Main Barrel RPC Types

Length: 2.455 m

Width: 1.5, 2.0 , 2.5 m Pitch: 40.8, 40.6, 41.0 mm # Strips for Gap: 48, 36, 48, 60 Width: 1.48 m Pitch: 34.8 mm # Strips for Gap: 42

Width: 1.5, 2.0 , 2.5 m Pitch: 27.3, 29.3 mm # Strips for Gap: 84, 90

Width: 1.5, 2.0 , 2.5 m Pitch: 22.7, 24.3 mm # Strips for Gap: 84, 90

RPC data flow and trigger

RPC Production Sites

Sofia

Pavia

Q = 250 ko max

Bari

CMS Muon System

Installation of DT and RPC

At SX5 Installation in the CMS Detector Started in June At ISR Coupling RPC to DT Fast test Transportation to SX5(CMS surface hall)

CMS Muon System

L. Litov

RPC Production Sites

2004

7 14

Pakistan

Test of first chambers

Korea

ISR Lab

Summary

CMS Muon System – big international project - 3 Continents

DT Chambers

136/250 DT chambers produced.Delivered to CERN -115Installed -20

End production around mid 2005

Few months delay due to problem with HV distribution boards

CSC Chambers

Production finished (482 chambers) Tested - 80% Delivered at CERN – 65% Installed 25% .

RPC Chambers

232 chambers have been assembled (out of 480)
Production is going smothly. Two months delay on schedule.
192 chambers have been accepted after the cosmics test.
Endcap RPC – production started

L. Litov