Extraction of V_{us} from Kaon Decays

Leandar Litov University of Sofia

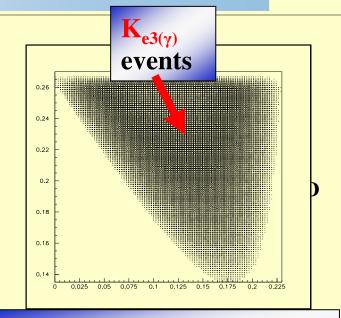
|Vus| can be extracted from K $\rightarrow \pi l \nu$ via

$$|V_{us}| \cdot f_{+}^{K\pi}(0) = \sqrt{\frac{128\pi^{3}\Gamma(Kl3(\gamma))}{C^{2}G_{F}^{2}M_{K}^{5}S_{EW}I_{K}}}$$

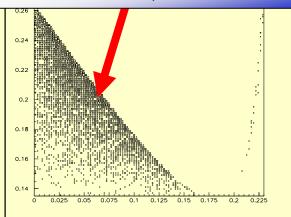
Where:

Long distance radiative corrections are included in I_k and $f_+(0)$ The physical quantity

$$\Gamma(K_{e3(\gamma)}) = \Gamma(K_{e3}) + \Gamma(K_{e3\gamma}) + \dots$$


where the radiative corrections with virtual and real photos are taken into account Is well defined, calculable and measurable!

Prescription


- Accept all photon energies
- Accept all angles between pion and positron
- Accept only pion and positron energies within the original 3-body Dalitz plot.
- Inclusive rate obtained by integrating over the original domain

Experimentally – inclusive measurement of Br(Ke3). For determination of Vus, the corresponding Br(Ke3) should be inside the **Dalitz plot. Corrections are:**

 $C_{K}=0.49\%$ for K^{0} and $C_{K}=0.50\%$ for K^{+}

K_{e3y} events (excluded for the **Vus extraction**)

E_e, GeV

We can use three different parameterizations of the formfactors Linear

$$f_{+,0}^{(o)}(t) = f_{+}^{(o)}(0)[1 + \lambda_{+,0} \frac{t}{m_{\pi^{\pm}}^{2}}]$$

Quadratic

$$f_{+,0}^{(o)}(t) = f_{+}^{(o)}(0)[1 + \lambda_{+,0} \frac{t}{m_{\pi^{\pm}}^{2}} + \lambda_{+,0} \frac{t^{2}}{m_{\pi^{\pm}}^{4}}]$$

Pole

$$f_{+,0}^{(o)}(t) = f_{+}^{(o)}(0) \frac{m_{+,0}^2}{m_{+,0}^2 - t}$$

Input for calculation of V_{us}

Experimental data

- ✓ Br(Ke3)
- ✓ Mean life times of K⁰_I, K⁰_S, K⁺
- ✓ Linear and quadratic slopes of $f_+(t) \lambda_+$, λ_0 and λ_+ , λ_+ , λ_0
- \rightarrow Theoretical input $f_{+}^{K\pi}(0)$

Experimental data

To have comparable results

Experimental data should be treated in the same way

- -Inclusive measurement of the Br(Ke3)
- -Correct account for radiative corrections, including real photons

Two classes of data on measurement of Br(Ke3)
Old data – actually what is included in PDG 2004
New data – published or reported in 2003, 2004 and 2005

Experimental data

The careful investigation of old experimental data on measurement of Br(Ke3) leads to the definite conclusion that due to different reasons they are not enough accurate and are not suitable for extraction of Vus matrix element

In what follows we will use only the new high statistics experimental data on measurement of Br(Ke3)

$K_L^0 \rightarrow \pi e \nu - NA48 \text{ result}$

Experimental result

$$Br(K_{L}^{0} = 3)/Br(2tr) = 0.4978 \pm 0.0035$$

To determine $Br(K_{L}^{0} \rightarrow \pi ev)$ we need $Br(K_{L}^{0} \rightarrow 3\pi^{0})$

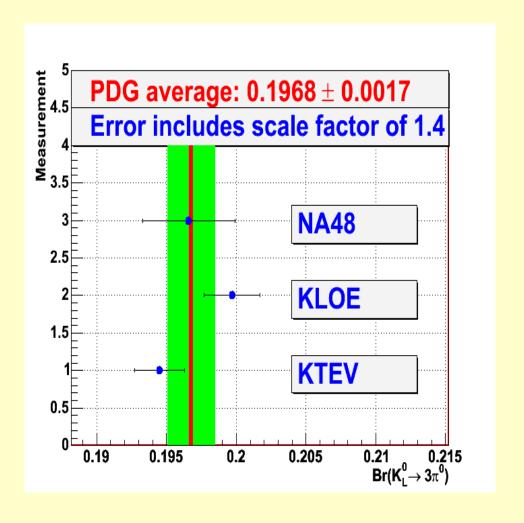
PDG04: Br(
$$K_1^0 \rightarrow 3\pi^0$$
) = 0.2105 ± 0.0028

KTeV Br(
$$K_1^0 \rightarrow 3\pi^0$$
) = 0.1945 ± 0.0018

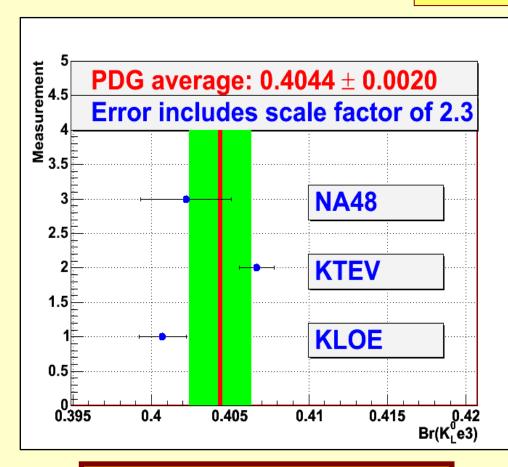
Average according PDG prescription

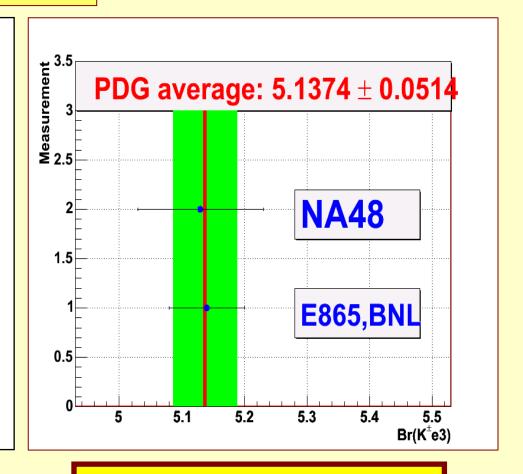
$$Br(K_1^0 \rightarrow 3\pi^0) = 0.1992 \pm 0.0070$$

$$Br(K_{L}^{0} = 3) = 0.4010 \pm 0.0028_{exp} \pm 0.0035_{norm}$$


Results for Br($K_{L}^{0} \rightarrow 3\pi^{0}$)

Taking into account the KTeV, NA48 and KLOE results we obtain


$$Br(K_L \rightarrow \pi^0 \pi^0 \pi^0) = 0.1968 \pm 0.0017$$


Than the NA48 result changes to

$$Br(K_{L}^{0} e3) = 0.4022 \pm 0.0029$$

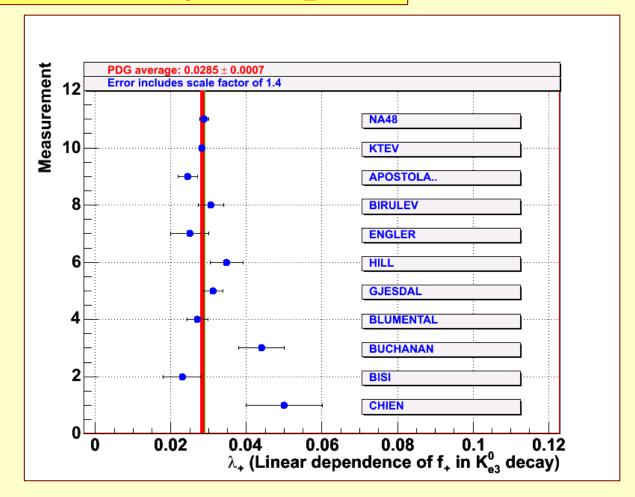
Br(Ke3)

 $Br(K_{L}^{0} = 3) = 0.4044 \pm 0.0020$

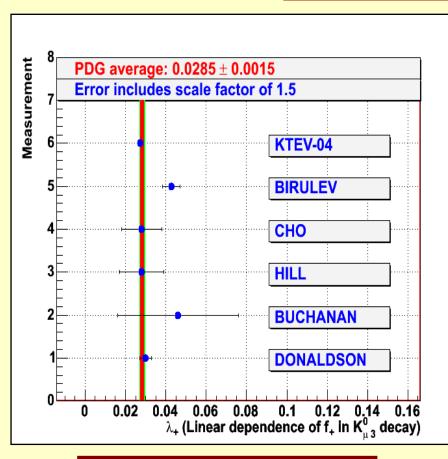
 $Br(K^{\pm} e3) = (5.137 \pm 0.051)\%$

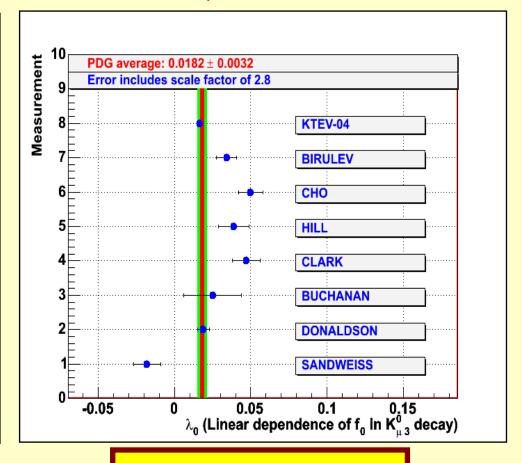
_____n of V_{us} from Kaon decay

IV NO INZVIVA. CHICAZVI. JAME ZAN


Slope of the $f_{+}(t) - K_{L}^{0}e3$

Linear approximation


$$\lambda_{+} = 0.0285 \pm 0.0007$$


Quadratic approximation KTeV result

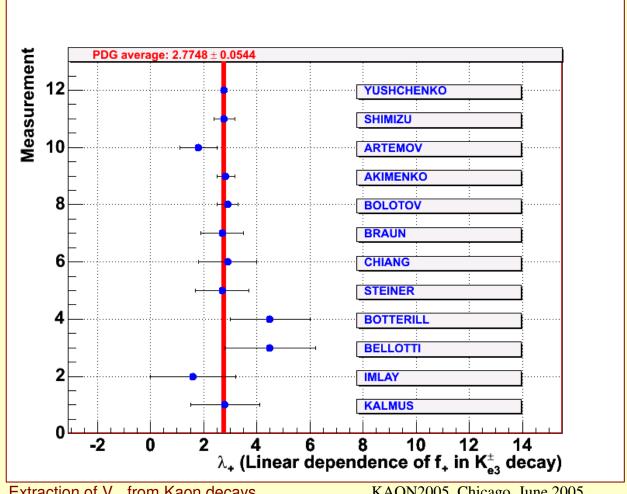
$$\lambda_{+} = 0.02167 \pm 0.00199$$

 $\lambda_{+}' = 0.00144 \pm 0.00039$

Slope of the $f_{+}(t) - K^{0}_{\mu 3}$

 $\lambda_{+} = 0.0285 \pm 0.0015$

 $\lambda_0 = 0.0182 \pm 0.0032$


Slope of the $f_{+}(t) - K^{\pm}$

Linear approximation

$$\lambda_{+} = 0.0277 \pm 0.0005$$

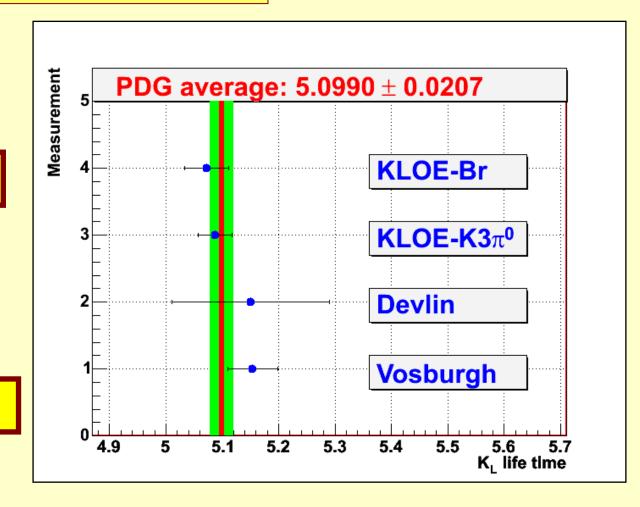
Quadratic approximation ISTRA+ result

$$\lambda_{+} = 0.02324 \pm 0.00155$$

 $\lambda_{+}' = 0.00084 \pm 0.00041$

Extraction of V_{IIS} from Kaon decays

KAON2005, Chicago, June 2005


Mean life time

K_L⁰ New KLOE results

$$\tau = (5.099 \pm 0.021).10^{-8}$$
s

K±

$$\tau = (1.2385 \pm 0.0025).10^{-8}$$
s

Calculation of
$$f_{+}^{K\pi}(0)$$

Let us represent f₊(t) in the following form:

$$f_{+} = \tilde{f}_{+}(t) + \hat{f}_{+}(t)$$

$$\tilde{f}_{+}(p^{4}) \qquad \tilde{f}_{+}(p^{6})$$

QCD effects to $O(p^6)$ EM contribution to $O(e^2p^2)$ EM contraterms relevant to π^0 - η mixing

local effects of virtual photon exchange of order O(e²p²)

Calculation of $f_{+}^{K\pi}(0)$

Calculation of $f_+(0)$ to $O(p^4)$ - Gasser & Leutwyler First calculation to $O(p^6)$ - Leutwyler & Roos QCD + isospin breaking

$$f_{+}^{K^0\pi^-}$$
 (0)=0.961±0.008

$$\tilde{f}_{+}^{K^{+}\pi^{0}}(0) = 0.982 \pm 0.008$$

$$\tilde{f}_{+}^{K\pi}(0)|_{p^{6}} = -0.016 \pm 0.008$$

Bijnens & Talavera

$$\tilde{f}_{+}^{K\pi}(0) = 0.976 \pm 0.010$$

$$\tilde{f}_{+}^{K\pi}(0)|_{p^{6}} = -8(\frac{M_{K}^{2} - M_{\pi}^{2}}{F_{\pi}^{2}})[C_{12}^{r}(\mu) + C_{34}^{r}(\mu)] + \Delta_{loops}(\mu)$$

$$\tilde{f}_{+}^{K\pi}(0)|_{p^{6}}^{local} = -0.016 \pm 0.008$$

$$\Delta_{loops}(M_{\rho}) = 0.0146 \pm 0.0064$$

Calculation of
$$f_{+}^{K\pi}(0)$$

Quenched lattice calculations – Becirevic at al.

$$\tilde{f}_{+}^{K^0\pi^-}$$
 (0)=0.960±0.009

$$\tilde{f}_{+}^{K\pi}(0)|_{p^{6}} = -0.017 \pm 0.008$$

Cirigliano, Neufeld and Pichl Calculation using χPT with virtual photons and leptons

- Isospin breaking by the quark masses up to O((m_u-m_d)p²)
- Isospin conserving contribution from SU(3) breaking O(p⁶)
- Electromagnetic effects up to O(e²p²)

Calculation of $f_{+}^{K\pi}(0)$

To extract Vus we have used the following values

	LO + NLO QCD	EM. radiative corrections	NNLO QCD	total
K_0	0.97699±0.00002	0.0046±0.0008	-0.001±0.010	0.981±0.010
K+	1.0002±0.0022	0.0032±0.0016	-0.001±0.010	1.002±0.010
			0.007±0.012	
K ₀	0.97699±0.00002	0.0046±0.0008	-0.017±0.009	0.965±0.009
K+	1.0002±0.0022	0.0032±0.0016	-0.017±0.009	0.986±0.010

The main uncertainty (~1%) comes from O(p⁶) contribution

Results – K⁰

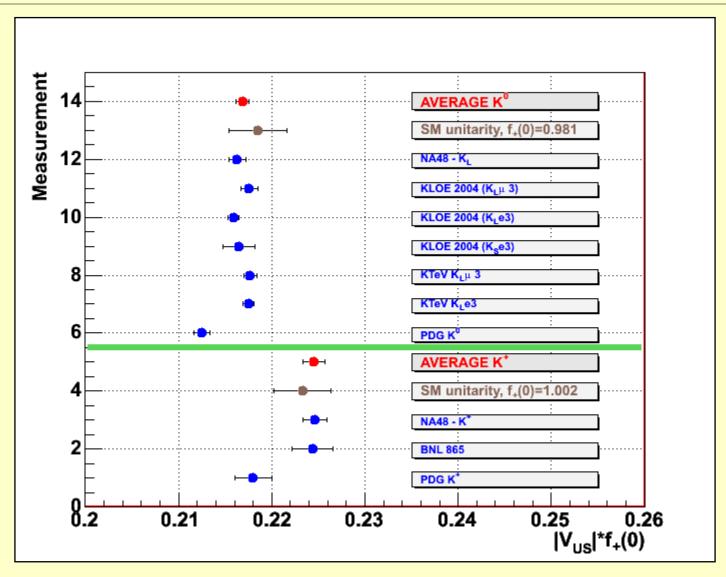
$$f_{+}^{K^0\pi^+}(0) = 0.965 \pm 0.009$$

Linear approximation of $f_{+}(0)$

Experiment	Br	$V_{us}f_{+}(0)$	V _{us}
PDG	0.3881±0.0027	0.2125±0.0009	0.2202±0.0022
NA48	0.4022±0.0029	0.2163±0.0009	0.2241±0.0022
KTeV	0.4067±0.0011	0.2175±0.0006	0.2254±0.0021
KLOE – K _L	0.4007±0.0015	0.2159±0.0006	0.2237±0.0021
KLOE – K _S	(7.09±0.11).10 ⁻⁴	0.2165±0.0017	0.2244±0.0021
$KTeV - K_{\mu3}$	0.2701±0.0009	0.2177±0.0007	0.2256±0.0021
KLOE – K _{µ3}	0.2698±0.0015	0.2176±0.0009	0.2255±0.0021
Average K _L	0.4044±0.0020	0.2169±0.0007	0.2248±0.0024

Leandar Litov

Extraction of v_{us} from Naon decays


KAONZOOS, Chicago, June 2005

Results - K+

Linear approximation of f₊(0)

$$f_{+}^{K^{+}\pi^{0}}(0) = 0.986 \pm 0.010$$

Experiment	Br [%]	$V_{us}f_{+}(0)$	V _{us}
PDG	4.84±0.09	0.2180±0.0020	0.2176±0.0030
NA48	5.14±0.06	0.2246±0.0013	0.2278±0.0026
E865	5.13±0.10	0.2244±0.0022	0.2276±0.0031
Average	5.137±0.051	0.2245±0.0012	0.2277±0.0025

Consistency of K_I and K_{ch} data

Ratio of f₊(0) for K₁ and K⁺ can be measured

$$R = f_{+}^{K^{0}\pi^{+}}(0) / f_{+}^{K^{+}\pi^{0}}(0)$$

Its calculation is free from many of the theoretical uncertainties

$$R^{th} = 1.022 \pm 0.003 - 16\pi\alpha X_1$$
 $1.017 \le R^{th} \le 1.027$

$$1.017 \le R^{th} \le 1.027$$

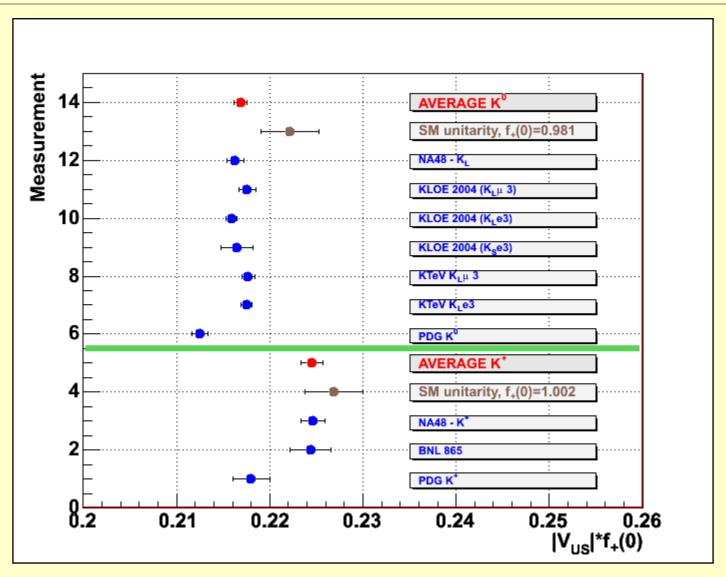
From the averaged K_L and K⁺ data we obtain

$$R^{\text{exp}} = 1.035 \pm 0.006$$

In disagreement with theoretical predictions $\sim 2\sigma$

- failure of the naïve dimensional analysis for X₁
 failure of chiral power counting
 wrong mean life times

If we use for V_{us} determination


$$f_{+}^{K^0\pi^+}(0) = 0.981 \pm 0.010$$

$$f_{+}^{K^{0}\pi^{+}}(0) = 0.981 \pm 0.010$$
 $f_{+}^{K^{+}\pi^{0}}(0) = 1.002 \pm 0.010$

$$|V_{us}|^{K^0\pi^+} = 0.2211 \pm 0.0022$$

$$|V_{us}|^{K^{\pm}\pi^0} = 0.2241 \pm 0.0025$$

The values of V_{us} are changed ~ 1.7 σ Calculation of f₊(0) is the most important problem to be solved

Non linear approximation leads to

$$|V_{us}|.f_{+}^{K^0\pi^+}(0) = 0.2179 \pm 0.0011$$

$$|V_{us}|^{K^0\pi^+}$$
 (0) = 0.2258 ± 0.0024

$$|V_{us}|.f_{+}^{K^{\pm}\pi^{0}}(0) = 0.2253 \pm 0.0014$$

$$|V_{us}|^{K^{\pm}\pi^{0}} (0) = 0.2285 \pm 0.0027$$

The values of $V_{us}f_{+}(0)$ are changed ~ 1σ and ~ 0.6σ The values of Vus are changed ~ 0.4σ and ~ 0.3σ

In perfect agreement with unitarity of CKM matrix

Determination of $f_{\downarrow}(0)$

If we suppose that CKM matrix is unitary

$$|V_{us}| = 0.2265 \pm 0.0022$$

then we can determine the values of f₊(0) using

$$|V_{us}| \cdot f_{+}^{K^{0}\pi^{+}}(0) = 0.2169 \pm 0.0007$$

$$|V_{us}| \cdot f_{+}^{K^{\pm}\pi^{0}}(0) = 0.2245 \pm 0.0012$$

$$f_{+}^{K^0\pi^+}(0) = 0.958 \pm 0.009$$

$$f_{+}^{K^{+}\pi^{0}}(0) = 0.991 \pm 0.010$$

The non linear approximation does not effects the result significantly

$$f_{+}^{K^0\pi^+}(0) = 0.962 \pm 0.008$$

$$f_{+}^{K^{+}\pi^{0}}(0) = 0.995 \pm 0.011$$

Conclusions- V_{us}

- The careful analysis of the existing data has shown
 - the old measurements are not suitable for determination of V_{us}
 - > new measurement of all kaon branching fractions is desirable
 - > new more precise measurements of Ke3 and Kμ3 form factors are needed
 - > new measurement of the kaon mean life times will be welcome
 - KLOE and part of NA48 data are still preliminary
- Vus values obtained using average values of Br(Ke3)
 - Support the unitarity of CKM matrix
 - \triangleright Strongly depend from the values of $f_{\downarrow}(0)$
 - ➤ More precise calculation of O(p⁶) contribution is required
- ❖ The experimental data for R are in disagreement with theoretical predictions
- Measured values of f₊(0) (with unitary CKM matrix) cause questions to the theory

Old experimental data - K[±]

Direct measurement of Br(Ke3)

dominating experiment Chiang et al., Phys.Rev.D6, 1972, p.1254 accuracy ~ 2%

Ke3 measurement is nor inclusive

No radiative corrections

The decays $\pi \rightarrow \mu$ are not taken into account

The Dalitz decays of π^0 are not taken into account

In the PDG fit also contribute

- $ightharpoonup Br(Ke3)/Br(2\pi)$
 - -in the dominating experiment (\sim 5% acc.) rad. corrections without real γ
- $ightharpoonup Br(K_{\mu 3})/Br(K_{e 3})$

K. Horie, Phys. Lett. B513, p. 311, 2001

The measurement is not inclusive

Ke3γ is considered as background

Old experimental data – K_L⁰

There is no direct measurement of Br(Ke3) In the PDG fit contribute

- $ightharpoonup Br(K_{u3})/Br(K_{e3}) 4$ experiments with good statistic
 - > Two of them are perfect, both measure $Br(K_{\mu 3})/Br(K_{e3}) = 0.662$ close to KTeV result
 - The other two Hydrogen bubble chambers
 In this case separation of Ke3 and Kμ3 decays is extremely difficult
 - 50% of the events are ambiguous to separate complicated weighting procedure
 - Their results shift $Br(K_{\mu3})/Br(K_{e3})$ to 0.697 in strong disagreement with recent measurements
- The other contribution is from Kreutz, ZPHY C55, p.67, 1995 the results from this experiment are in strong contradictions with recent measurements