# e/π Separation in the NA48 Experiment Using Neural Networks

L. Litov University of Sofia





2003 Program for a precision measurement of Charged Kaon Decays Parameters

Direct CP - violation in K<sup>±</sup> → π<sup>±</sup>π<sup>±</sup>π<sup>∓</sup>, K<sup>±</sup> → π<sup>0</sup>π<sup>0</sup>π<sup>±</sup>
Ke4 - K<sup>±</sup> → π<sup>±</sup>π<sup>∓</sup>e<sup>±</sup>ν(v̄)
Scattering lengths d<sub>0</sub><sup>0</sup>, d<sub>0</sub><sup>2</sup>
Radiative decays K<sup>±</sup> → π<sup>±</sup>γγ, K<sup>±</sup> → π<sup>±</sup>γγγ, K<sup>±</sup> → π<sup>±</sup>π<sup>0</sup>γ



### **NA48**





L. Litov

| N, | 1-    |  |
|----|-------|--|
|    | MQ.   |  |
| Y  | 14. 1 |  |

## Introduction



• Significant background in  $K_{e4}$  comes from  $K_{3\pi}$ 

| $K^+  ightarrow \pi^+ \pi^+ \pi^-$ decay                             | Background in $K_{e4}^c$ |
|----------------------------------------------------------------------|--------------------------|
| $\pi$ with $0.9 < E_{cal}/p < 1.1$                                   | 4%                       |
| $K^+  ightarrow \pi^+ \pi^+ \pi^-  ightarrow \delta ray > e GeV$     | $\leq 0.1\%$             |
| $K^+ \to \pi^+ \pi^+ \pi^- \to e \nu_e (Br = 1.2 \cdot 10^{-4})$     | $\leq 0.1\%$             |
| $K^+  ightarrow \pi^+ \pi^-  ightarrow \mu  u_\mu  ightarrow e  u_e$ | $\leq 0.1\%$             |

+ Goal - to reach good enough e/ $\pi$  separation

♦ 
$$K^+ → \pi^+ \pi^+ \pi^- < 0.1 \%$$

Definitions:

- $\bullet$  Probability to identify a  $\pi$  as an e :  $\epsilon^{\pi \rightarrow e}$
- Probability to identify an e as an e :  $\epsilon^{e}_{eff}$
- $\bullet$  i.e. relatively to E/p < 0.9 cut  $\epsilon^{\pi \to e} \sim 2.5 \cdot 10^{-2}$





- Difference in development of e.m. and hadron showers
- Lateral development
- LKr gives information for lateral development
- NHODO gives information for longitudinal development
- From LKr
  - ≻ E/p
  - Emax/Eall, RMSX, RMSY
  - Distance between the track entry point and the associated shower
  - Effective radius of the shower



#### Sensitive variables - E/p





L. Litov

 $e/\pi$  Separation in the NA48 Experiment Using Neural Networks



#### **Sensitive variables - RMS**





L. Litov

e/π Separation in the NA48 Experiment Using Neural Networks



 $e/\pi$  Separation in the NA48 Experiment Using Neural Networks



#### Sensitive variables - Emax/Eall, Reff





L. Litov

 $e/\pi$  Separation in the NA48 Experiment Using Neural Networks





To test different possibilities we have used:

- ➢Simulated Ke3 decays − 1.3 M
- $\succ Simulated single e and <math display="inline">\pi-800$  K  $\pi$  and 200 K e

 $\begin{aligned} & \diamond \text{Using different cuts we have obtained} \\ & \geq \text{Relatively to E/p} < 0.9 \text{ cut} \quad \mathcal{E}_{eff}^{\pi \to e} = 15.7 \times 10^{-2} \\ & \geq \text{Keeping} \quad \mathcal{E}_{eff}^{e} > 95 \% \end{aligned} \\ & \diamond \text{Using Neural Network it is possible to reach e/\pi separation:} \\ & \geq \text{Relatively to E/p} < 0.9 \text{ cut} \quad \mathcal{E}_{eff}^{\pi \to e} < 2.0 \times 10^{-2} \\ & \geq \text{Keeping} \quad \mathcal{E}_{eff}^{e} > 98\% \end{aligned}$   $& \diamond \text{The background from} \quad K^{\pm} \to \pi^{\pm} \pi^{\pm} \pi^{\mp} \sim 0.1\% \end{aligned}$ 



## **Neural Network**



Powerful tool for: Classification of particles and final states
Track reconstruction
Particle identification
Reconstruction of invariant masses
Energy reconstruction in calorimeters

Basic computing element - Neuron



neuron performs calculations in three steps

$$I_i = \sum_k w_{ik} O_k, \qquad A_i(I) = \frac{1}{1 + e^{-(I_i + b_i)}}, \qquad O_i = \Theta(A_i - A_{0i}), \quad (1)$$

L. Litov





 $e/\pi$  Separation in the NA48 Experiment Using Neural Networks



#### **Neural Network**



Multi-Layer-Feed Forward network consists of:

- Set of input neurons
- ≻One or more layers of hidden neurons
- ≻Set of output neurons

>The neurons of each layer are connected to the ones to the subsequent layer

#### Training

➢ Presentation of pattern

Comparison of the desired output with the actual NN output

Backwards calculation of the error and adjustment of the weights

Minimization of the error function

$$E = \frac{1}{2} \sum_{j} (t_{j} - o_{j})^{2}$$



L. Litov

e/π Separation in the NA48 Experiment Using Neural Networks



#### **Neural Network**



Backpropagation learning algorithm

$$\Delta w = -\eta \frac{\partial E}{\partial w}$$

- $\blacklozenge$   $\eta$  learning rate varies significantly
- Rprop uses individual learning rate and Manhattan updating rule

$$\Delta w = -\eta sign[\frac{\partial E}{\partial w}]$$

At every step,  $\eta$  is adjusted as:

$$\eta_{w,t+1} = \gamma^+ \eta_{w,t}$$
 if  $\partial E_{t+1} \cdot \partial E_t > 0$ ,

 $\eta_{w,t+1} = \gamma^- \eta_{w,t}$  if  $\partial E_{t+1} \cdot \partial E_t < 0$ 

$$0 < \gamma^- < 1 < \gamma^+$$

L. Litov



#### **Experimental data**



We have used experimental data from three different runs

♦Kµ3 special run 99

- >electrons from reconstructed  $K^0 e3$ >pions from  $K^0 \rightarrow \pi^+ \pi^- \pi^0$
- ♦ Charged kaon test run # 1 2001
  > electrons from  $K^{\pm} \rightarrow \pi^{\pm}\pi^{0} \rightarrow \pi^{\pm}e^{+}e^{-}\gamma$ > pions from  $K^{\pm} \rightarrow \pi^{\pm}\pi^{\pm}\pi^{\mp}$ ♦  $K^{0}e4$  run 2001
- ► electrons from  $K^0 e 3$ ► pions from  $K^0 \to \pi^+ \pi^- \pi^0$



#### **Charged run**



$$K^{\pm} \rightarrow \pi^{\pm} \pi^{\pm} \pi^{\mp}$$

Pions

Track momentum . 3 GeV

 **very tight**  $K^{\pm} \rightarrow \pi^{\pm}\pi^{\pm}\pi^{\mp}$ selection

Track is chosen randomly

Requirement – E/p < 0.8 for the other two tracks





#### $K^{\pm} \rightarrow \pi^{\pm}\pi^{0} \rightarrow \pi^{\pm}e^{+}e^{-}\gamma$



#### Selection :

- ✤3 tracks
- Distance between each two tracks > 25 cm
- ♦All tracks are in HODO and MUV acceptance
- Selecting one of the tracks randomly
- ♦ Requirement two are e (E/p > 0.9) and  $\pi$  (E/p < 0.8)
- ✤The sum of tracks charges is ±1
- Three-track vertex CDA < 3 cm</p>
- $\bullet$ One additional  $\gamma$  in LKr, at least 25 cm away from the tracks
- ♦0.128 GeV <  $m_{\pi^0}$  < 0.140 Gev
- ♦ 0,482 GeV <  $m_k^{"}$  < 0.505 GeV



 $K^{\pm} \rightarrow \pi^{\pm}\pi^{0} \rightarrow \pi^{\pm}e^{+}e^{-}\gamma$ 





L. Litov

 $e/\pi$  Separation in the NA48 Experiment Using Neural Networks



#### **Charged run**





L. Litov

 $e/\pi$  Separation in the NA48 Experiment Using Neural Networks



#### **Charged run NN output**





Vienna 26 April 2002

 $e/\pi$  Separation in the NA48 Experiment Using Neural Networks

L. Litov



#### **Charged run NN performance**



**♦**Net: 10-30-20-2-1

♦Input: E/p, Dist, Rrms, p, RMSx, RMSy, dx/dz, dy/dz, DistX, DistY
♦Teaching: 10000 π - K<sup>±</sup> → π<sup>±</sup>π<sup>±</sup>π<sup>∓</sup>, 5000 e - K<sup>±</sup> → π<sup>±</sup>π<sup>0</sup> → π<sup>±</sup>e<sup>+</sup>e<sup>-</sup>γ

out > 0.95/ALL

out> 0.95/E/p > 0.9

| l                    |              | $e^{\pm}$           | $\pi^{\mp}$          | $\epsilon_{\epsilon}^{\epsilon}$ | $f_{ff},\%$         |
|----------------------|--------------|---------------------|----------------------|----------------------------------|---------------------|
|                      | ALL          | 8889                | 912164               |                                  |                     |
|                      | E/p > 0.6    | 8776                | 69334                |                                  | -                   |
|                      | E/p > 0.9    | 8662                | 7533                 | 9'                               | 7.4                 |
|                      | out > 0.9    | 8357                | 254                  | 94                               | 4.0                 |
| 1                    | out > 0.95   | 8070                | 168                  | 90.8                             |                     |
|                      |              |                     |                      |                                  |                     |
|                      |              |                     | $\epsilon^{n-r_{0}}$ |                                  | $\epsilon_{eff},\%$ |
| 0                    | out> 0.9/ALL |                     | $2.8 \cdot 10^{-1}$  | 4                                | 94.                 |
| out> $0.9/E/p > 0.9$ |              | $3.4 \cdot 10^{-1}$ | 2                    | 96.5                             |                     |

 $1.8 \cdot 10^{-1}$ 

 $2.2 \cdot 10$ 

90.8

93.2





E/p > 0.9 Non symmetric E/p distribution



E/p > 0.9 outNN > 0.9 Symmetric E/p distribution

L. Litov

 $e/\pi$  Separation in the NA48 Experiment Using Neural Networks









 $e/\pi$  Separation in the NA48 Experiment Using Neural Networks



#### There is a good agreement between MC and Experimental distributions

L. Litov

 $e/\pi$  Separation in the NA48 Experiment Using Neural Networks

|                                           | Кµ3                                | run                                                                     |
|-------------------------------------------|------------------------------------|-------------------------------------------------------------------------|
| Electrons: $K^0 \rightarrow \pi$          | $e^{\pm}e^{\mp}V$                  | Pions from $K^0 \rightarrow \pi^+ \pi^- \pi^0$                          |
| Standard Ke3 sele                         | ection                             | 2 tracks and one vertex                                                 |
| Except E/p cuts                           |                                    | Two or more gammas                                                      |
| Track momentum                            | > 10 GeV                           | $\bigstar M_{eff}$ of the two $\gamma$ within $3\sigma$ of $m_{\gamma}$ |
| Requirement – 0.1 and selecting the other | 15 < E/p < 0.6<br>ner one          | Stackground rejection ( $P_0^{\prime 2} > -0.005$                       |
| 9                                         |                                    | Transversal momentum of the K < 0.012 GeV                               |
|                                           |                                    | $*M_{eff}^{3\pi}$ within $3\sigma$ of $M_{K}$                           |
| L. Litov e                                | $/\pi$ Separation in the NA48 Expe | riment Using Neural Networks Vienna 26 April 2002                       |



#### Kµ3 run



## $K^{0} \rightarrow \pi^{+}\pi^{-}\pi^{0}$



L. Litov

e/π Separation in the NA48 Experiment Using Neural Networks



#### Kµ3 run







L. Litov

e/π Separation in the NA48 Experiment Using Neural Networks



### Kµ3 run





L. Litov

 $e/\pi$  Separation in the NA48 Experiment Using Neural Networks



#### Kµ3 run – NN output





e/π Separation in the NA48 Experiment Using Neural Networks

L. Litov



#### Kµ3 run NN performance



**♦**Net: 10-30-20-2-1

**♦**Input: E/p, Dist, Rrms, p, RMSx, RMSy, dx/dz, dy/dz, DistX, DistY **♦**Teaching: 10000 π -  $K^0 \rightarrow \pi^+ \pi^- \pi^0$ , 5000 e -  $K^0 \rightarrow \pi^\pm e^\mp v$ 

|               | $e^{\pm}$ | $\pi^{\mp}$            | $\epsilon^{e}_{eff}$ ,% |  |
|---------------|-----------|------------------------|-------------------------|--|
| ALL           | 808657    | 970337                 |                         |  |
| E/p > 0.6     | 808656    | 84578                  |                         |  |
| E/p > 0.9     | 806163    | 9934                   | 99.7                    |  |
| out > 0.9     | 775522    | 530                    | 95.7                    |  |
| out > 0.95    | 759423    | 416                    | 93.9                    |  |
|               |           |                        |                         |  |
|               |           | $\epsilon^{\pi \to e}$ | $\epsilon^{e}_{eff}$ ,% |  |
| out > 0.9/ALL |           | $5.5 \cdot 10^{-4}$    | 95.9                    |  |

|                       | _                   | effic |
|-----------------------|---------------------|-------|
| out > 0.9/ALL         | $5.5 \cdot 10^{-4}$ | 95.9  |
| out> $0.9/E/p > 0.9$  | $5.3 \cdot 10^{-2}$ | 96.2  |
| out > 0.95 / ALL      | $4.3 \cdot 10^{-4}$ | 93.9  |
| out> $0.95/E/p > 0.9$ | $4.2 \cdot 10^{-2}$ | 94.2  |



#### Ke4 run



**Decay**  $K^0 \rightarrow \pi^{\pm} e^{\mp} \pi^0 v$ 

♦ Significant background comes from  $K^0 → \pi^+ \pi^- \pi^0$ ♦ when one π is misidentified as an e

◆Teaching sample:
 ▶Pions - from K<sup>0</sup> → π<sup>+</sup>π<sup>-</sup>π<sup>0</sup>, 800 K events
 ▶Electrons - from K<sup>0</sup> → π<sup>±</sup>e<sup>∓</sup>V, 22 K events

Two splits – here the results obtained using the old one are represented Thanks to Laurenz





 $e/\pi$  Separation in the NA48 Experiment Using Neural Networks







Vienna 26 April 2002

L. Litov

 $e/\pi$  Separation in the NA48 Experiment Using Neural Networks



#### Ke4 run NN performance



**♦**Net: 10-30-20-2-1

**♦**Input: E/p, Dist, Rrms, p, RMSx, RMSy, dx/dz, dy/dz, DistX, DistY **♦**Teaching: 10000 π -  $K^0 \rightarrow \pi^+ \pi^- \pi^0$ , 5000 e -  $K^0 \rightarrow \pi^\pm e^\mp v$ 

|           | $e^{\pm}$ | $\pi^{\mp}$            | $\epsilon^{e}_{eff},\%$ |  |
|-----------|-----------|------------------------|-------------------------|--|
| ALL       | 4940      | 616705                 |                         |  |
| E/p > 0.6 | 4915      | 461856                 | —                       |  |
| E/p > 0.9 | 4857      | 89605                  | 98.3                    |  |
| out> 0.85 | 4667      | 4630                   | 94.5                    |  |
| out> 0.9  | 4386      | 3729                   | 88.8                    |  |
|           |           | $\epsilon^{\pi \to e}$ | $\epsilon^{e}_{off}$    |  |

|                        | $\epsilon^{\pi  ightarrow e}$ | $\epsilon^{e}_{eff},\%$ |
|------------------------|-------------------------------|-------------------------|
| out > 0.85/ALL         | $7.5 \cdot 10^{-3}$           | 94.5                    |
| out $> 0.85/E/p > 0.9$ | $5.1\cdot10^{-2}$             | 95.0                    |
| out> 0.9/ALL           | $6.0\cdot10^{-3}$             | 92.7                    |
| out $> 0.95/E/p > 0.9$ | $3.2\cdot10^{-2}$             | 89.2                    |



L. Litov

e/π Separation in the NA48 Experiment Using Neural Networks



#### Conclusions



 $\begin{aligned} & \bullet e/\pi \text{ separation with NN has been tested on experimental data} \\ & \bullet \text{For charged K run we have:} \\ & \bullet \text{Relatively to E/p < 0.9 cut } \mathcal{E}_{e\!f\!f}^{\pi \to e} \sim 3.4 \times 10^{-2} \\ & \bullet \text{At } \mathcal{E}_{e\!f\!f} \sim 96\% \end{aligned}$ 

For Kµ3 run we have:
Relatively to E/p < 0.9 cut  $\mathcal{E}_{eff}^{\pi \to e} < 4.2 \times 10^{-2}$ At  $\mathcal{E}_{eff} \sim 94\%$ For Ke4 run we have:
Relatively to E/p < 0.9 cut  $\mathcal{E}_{eff}^{\pi \to e} \sim 5.1 \times 10^{-2}$ At  $\mathcal{E}_{eff} \sim 95\%$ 





NN for e/π separation is implemented in the NA48 off-line analysis software

\*Using NN it is possible to reduce significantly the background in the Ke4 decays coming from  $K \rightarrow 3\pi$ 

It is possible to improve NN performance using cell by cell information from row data

This work was done in close collaboration with
 C. Cheshkov, G. Marel, S. Stoynev and Laurenz Widhalm