Measurement of Vus. Recent NA48 results on semileptonic and rare Kaon decays

Leandar Litov, CERN On behalf of the NA48 Collaboration

Introduction

- CKM Unitarity
- NA48 Experimental setup
- Measurement of Br(K⁰_Le3)/Br(2tr)
- ➢ Br(K⁰_Le3)
- > Measurement of Br($K_L^0 \rightarrow 3\pi^0$)
- Measurement of Br(K[±]e3)
- Extraction of Vus
- ➢ K⁰_Le3 form factors
- > Radiative decay $Br(K_L^0e3\gamma)$
- Rare decays
 - $\succ K^0_L \rightarrow e^+e^-\gamma$ form factor
 - $\succ \operatorname{Br}(\mathsf{K}^{0}_{\mathsf{L}} \rightarrow e^{+}e^{-} e^{+}e^{-})$
 - ≻ K⁰_{e4} decay
 - > Search for $K_s^0 \rightarrow 3\pi^0$
 - > Observation of K⁰s $\rightarrow \pi^0 \mu^+ \mu$
- Conclusions

CKM Unitarity

```
Unitarity of CKM matrix requires for the first row
                |Vud|^2 + |Vus|^2 + |Vub|^2 = 1
PDG 2004 data
                |Vud| = 0.9738 \pm 0.0005 - well measured
                |Vub| = (3.67 \pm 0.47).10^{-3} - (|Vub|^2 \approx 10^{-5} \text{ negligible})
SM prediction
                |Vus| = 0.2274 \pm 0.0021
Experimental value
                |Vus| = 0.2200 \pm 0.0026
               \Delta|Vus|=0.0074 ± 0.0033 ~2.2 \sigma discrepancy
To solve the problem – measurement with precision \sim 1\% (limited by theory)
Semileptonic decays K \rightarrow \pi ev best for determination of |Vus|
Recent measurements from K<sup>+</sup>e3 (BNL2003) and K<sup>0</sup>e3 (KTeV) and
KLOE, prel, 2004) are significantly above previous results.
```

Leandar Litov

V_{us}f₊(0)

Measurement of Vus. Recent NA48 results on semileptnic and

NA48 experiment

Main detector componentsMagnet spectrometer

 Two drift chambers before and two after spectrometer magnet
 Momentum resolution < 1% for 20 GeV/c momentum

$$\frac{\delta E}{E} = \frac{3.2\%}{\sqrt{E[GeV]}} \oplus \frac{90MeV}{E} \oplus 0.42\%$$

Muon veto sytem Hadron calorimeter Liquid krypton calorimeter Hodoscope Drift chamber 4 Anti counter 7 Helium tank Drift chamber 3 Magnet Drift chamber 2 Anti counter 6 Drift chamber 1 Kevlar window

Hadron Calorimeter
 Muon Veto system
 Beams – K⁰_L, K⁰_s, K[±]

Leandar Litov

Measurement of Vus. Recent NA48 results on semileptnic and rare Kaon decays

New NA48 results

Vus measurement

Measurement of Vus. Recent NA48 results on semileptnic and rare Kaon decays

- Semileptonic K_L decays $K_L^0 \rightarrow \pi l v$
 - Data from special minimum bias run 1999 with pure K⁰_L beam
 - Very high statistics available 80 million triggers taken

✤ General idea

- > Normalize to as many as possible channels
- Data selection and analysis as simple as possible
- Measure the ratio $Br(K_{L}^{0} e3)/Br(2tr)$ 2tr = all K_{L}^{0} decays with two charged

particles in the spectrometer

Normalization on

 $Br(2tr) = 1.0048 - Br(K_{L}^{0} \rightarrow 3\pi^{0})$

Main selection criteria for 2 track sample

Decay vertex within 8 m and 33 m from final collimator

Track separation in LKr > 25 cm

Track momenta > 10 GeV

➢Psum = P1 + P2 > 60 GeV

12.6 million 2 track events

 $★ K_{L}^{0} → πev selection - the same but$ ≥ E(LKr)/p > 0.93

Monte Carlo simulation of detector acceptance

- > All two track channels involved (Ke3, K μ 3, K3 π ,K2 π ,K3 π^0_D)
- For average 2-track acceptance use Br fractions
- > Average from PDG and KTeV (Bµ3/Be3, B3π/Be3,....)

 $A_{2tr} = 0.2412 \pm 0.0004$

- Ke3 simulation includes radiative corrections and Ke3γ with real photons Ginsberg (Phys.Rev. 171, 1675(1968)+ errata)
- Good agreement between MC and data except for high momentum K⁰_L
- Systematic errors
 - Main contribution comes from inexact knowledge of beam momentum (can be reconstructed only up to quadratic ambiguity)
 - For measurement of beam momentum distribution K2pi and K3pi decays
 - Experimental uncertainty of 0.7% on measured ratio
- Statistical errors are negligible

Leandar Litov

Measurement of Vus. Recent NA48 results on semileptnic and rare Kaon decays

Experimental result

 $Br(K_{L}^{0} e3)/Br(2tr) = 0.498 \pm 0.004$

Preliminary

To determine $Br(K_{L}^{0} \rightarrow \pi ev)$ we need $Br(K_{L}^{0} \rightarrow 3\pi^{0})$ PDG04: $Br(K_{L}^{0} \rightarrow 3\pi^{0}) = 0.2105 \pm 0.0028$ KTeV $Br(K_{L}^{0} \rightarrow 3\pi^{0}) = 0.1945 \pm 0.0018$? Average according PDG prescription $Br(K_{L}^{0} \rightarrow 3\pi^{0}) = 0.1992 \pm 0.0070$

 $Br(K_{L}^{0} e3) = 0.4010 \pm 0.0028_{exp} \pm 0.0035_{norm}$

Preliminary

Measurement of Vus. Recent NA48 results on semileptnic and rare Kaon decays

Measurement of $Br(K^0_L \rightarrow 3\pi^0)$

• Br($K_{L}^{0} \rightarrow 3\pi^{0}$) is the main experimental uncertainty on Br(K_{L}^{0} e3)

- \succ PDG (Kreutz et al 1995) inconsistent with new KTeV result by $\approx 5~\sigma$
- > Measure Br($K_L \rightarrow \pi^0 \pi^0 \pi^0$)/ Br(Ks $\rightarrow \pi^0 \pi^0$)
- > Br(Ks $\rightarrow \pi^0 \pi^{0} = 0.3104 \pm 0.0014$ well measured
- ✤ NA48/1 data, 2000:
 - High intensity Ks beam
 - > No material (DCH etc) between collimator and LKr calorimeter
 - Ideal for measurement of neutral Kaon decays
- ✤ We used only small amount of 2000 data
 - \succ ~200 000 K_L $\rightarrow \pi^0 \pi^0 \pi^0$
 - \succ ~600 000 Ks $\rightarrow \pi^0 \pi^0$
 - Two independent samples
 - > Same number of K_L and K_s is produced on the target

Measurement of $Br(K^0_L \rightarrow 3\pi^0)$

In a good agreement with KTeV result

Leandar Litov

Measurement of Vus. Recent NA48 results on semileptnic and

rare Kaon decays

Measurement of Br(K[±] $\rightarrow \pi^0 e^{\pm} v$)

NA48/2 data from 2003 Low intensity K⁺/K⁻ run (8 hours) with minimum bias trigger Normalize K[±] → π⁰ e[±] v decays to K[±] → π[±] π⁰ Br(K[±] → π[±] π⁰) = 0.2113 ± 0.0014 Selected events K⁺ → π⁰ e⁺ v 59 000 ev. K⁻ → π⁰ e⁻ v 33 000 ev.

- $K^- \rightarrow \pi^{\,0} \, e^{-} \, v$ 33 000 ev. $K^+ \rightarrow \pi^{\,+} \pi^0$ 468 000 ev. $K^- \rightarrow \pi^{\,-} \pi^0$ 260 000 ev.
- Practically background free
- Systematic
 - > Main sources Detector acceptance, Br(K[±] $\rightarrow \pi \pm \pi^0$), MC statistic

Measurement of Br(K[±] $\rightarrow \pi$ [±] ev)

Measurement of Vus. Recent NA48 results on semileptnic and rare Kaon decays

Measurement of Br(K[±] $\rightarrow \pi^0 e^{\pm} v$)

Preliminary NA48/2 result on Br(K[±] $\rightarrow \pi^0 e^{\pm} v$)

Br(K⁺ $\rightarrow \pi^{0} e^{+} v) = (5.163 \pm 0.021_{stat} \pm 0.056_{syst}) \%$

Br(K⁻
$$\rightarrow \pi^{0} e^{-} v$$
) = (5.093 ± 0.028_{stat} ± 0.056_{syst}) %

 $Br(K^{\pm} \rightarrow \pi^{0} e^{\pm} v) = (5.14 \pm 0.02_{stat} \pm 0.06_{syst}) \%$

Determination of Vus

|Vus| can be extracted from $K \rightarrow \pi ev$ via

$$|V_{us}| \cdot f_{+}^{K\pi}(0) = \sqrt{\frac{128 \pi^{3} \Gamma(Ke3(\gamma))}{C^{2} G_{F}^{2} M_{K}^{5} S_{EW} I_{K}}}$$

Where: Sew = 1.0232 – short distance enhancement factor, $C = \begin{cases} 1 & K_{e^3}^0 \\ 1/\sqrt{2} & K_{e^3}^+ \end{cases}$ I_k - phase space integral,

$$f_{+}^{K^{0}\pi^{+}}(0) = 0.981 \pm 0.010$$
$$f_{+}^{K^{+}\pi^{0}}(0) = 1.002 \pm 0.010$$

We used the values obtained by Cirigliano,Neufeld,Pichl (EPJ C35, 53,2004) Isospin violation effects, e.m. corrections, O(p⁶) terms are taken into account

Leandar Litov

Measurement of Vus. Recent NA48 results on semileptnic and rare Kaon decays

Determination of V_{us}f₊(0)

Determination of V_{us}f₊(0)

Leandar Litov

Determination of V_{us}

Leandar Litov

Measurement of Vus. Recent NA48 results on semileptnic and rare Kaon decays

Determination of V_{us}

Conclusions

Experimental determination of Vus from

✤ K[±]

- in disagreement with old measurements (PDG)
- in agreement with BNL result and SM prediction
- ✤ K⁰_L
 - in disagreement with old measurements (PDG)
 - In agreement with new KTeV and KLOE measurements
 - \succ Still in disagreement with SM prediction ~ 2.5 σ
- Main uncertainty comes from theoretical calculations of $f_+(0)$
 - More accurate calculation of O(p6) contribution required

New NA48 results

Other results

Leandar Litov

Measurement of Vus. Recent NA48 results on semileptnic and rare Kaon decays

Ke3 form factors

 $K_{L}^{0} \rightarrow \pi e \nu \gamma$

Good agreement with theory predictions!

Leandar Litov

Measurement of Vus. Recent NA48 results on semileptnic and rare Kaon decays

Rare decays

□K⁰_L→ e⁺e⁻γ form factor Measures structure of γ^{*} vertex NA48 98-2001 data ~ 60 000 ev. Preliminary result for BMS form factor

 $\alpha_{\rm K}^* = -0.207 \pm 0.019 \pm 0.017$

In good agreement with KTeV

 $\Box Br(K_{0}^{0} \rightarrow e^{+}e^{-} e^{+}e^{-})$ 200 events from 98/99 data

Br(K[±] → e⁺e⁻ e⁺e⁻) = (3.30 ± 0.24_{stat} ± 0.14_{syst} ± 0.24_{norm})x10⁻⁸

Leandar Litov

Measurement of Vus. Recent NA48 results on semileptnic and

rare Kaon decays

Rare decays

□ K⁰e4 decay

$$Br(K_{L} \rightarrow \pi \pm \pi^{0} e \pm v) = (5.21 \pm 0.07_{stat} \pm 0.09_{syst}) \times 10^{-5}$$

Precise measurement of the form factors Phys.Lett B 595,75,2004

□ Search for $K_s \rightarrow \pi^0 \pi^0 \pi^{0.}$ Final result on CPV parameter η^{000}

 $\begin{aligned} & \text{Re}(\ \eta^{000}) = -0.002 \pm 0.011_{\text{stat}} \pm 0.015_{\text{syst}} \\ & \text{Im} \ (\ \eta^{000}) = -0.003 \pm 0.013_{\text{stat}} \pm 0.017_{\text{syst}} \end{aligned}$

 $Br(K_s \rightarrow \pi^0 \pi^0 \pi^0) < 7.4 \times 10^{-7} 90\% CL$

hep-ex/0408053

□ Observation of 6 Ks $\rightarrow \pi^+\mu^+\mu^-$ events

$$Br(K_{s} \rightarrow \pi^{+} \mu^{+} \mu^{-}) = (2.8 + 0.15_{stat} - 0.12_{stat} \pm 0.2_{syst}) \times 10^{-9}$$

Leandar Litov

Measurement of Vus. Recent NA48 results on semileptnic and rare Kaon decays

Conclusions

- ✤ PDG values on |Vus| are in poor agreement with unitarity of the CKM matrix
- ✤ NA48 has performed |Vus| measurements in K⁰_Le3 and K[±]e3 decays
- ✤ K_L and K[±] results are
 - in disagreement with previous PDG values
 - In good agreement with recent results from KTeV and BNL
 - > In fair agreement with SM predictions (better for K^{\pm} , worse for K_L)
- More precise values for $f_{+}(0)$ are needed to solve the unitarity dilemma
- Semileptonic K_L decays
 - $\succ K_{L}^{0} \rightarrow \pi ev$ form factors
 - > Radiative decays $K^0_L \rightarrow \pi e v \gamma$
- ♦ KI → γ*γ^(*) decays
 - \succ K⁰_L \rightarrow e⁺e⁻ γ form factor and K⁰_L \rightarrow e⁺e⁻ e⁺e⁻
- Rare Ks decays
 - > First observation of Ks $\rightarrow \pi^+\mu^+\mu^-$
 - > Search for $K_s \rightarrow \pi^0 \pi^0 \pi^0$