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Introduction

� LHC Physics Program

� Search for SM Higgs Boson

� H �γγ,  Η � WW � lννννjj,   H � lljj

� SUSY searches – big E t
miss

� Requirement:

� Precise measurement of the photon and electron energy – ECAL

� Measurement of the jets energy

� Good hermetic coverage for measuring E t
miss 

� LHC experiments

� Precise Electromagnetic Calorimeters

� As good as possible Hadron Calorimeters

� Gaussian response and good linearity
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CMS detector

Total weight        : 12500 T                Overall length      :  21.5 m

Overall Diameter      :  15.0 m                 Magnetic field  :  4 Tesla
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CMS ECAL

PbWO4  crystals

Barrel: ηηηη < 1.479

23 cm long, 22x22 mm2 

Granularity 

∆η  ∆η  ∆η  ∆η  x ∆φ∆φ∆φ∆φ = 0.0175 x 0.0175

Endcaps: 1.48 < η < 3.0

Variable granularity

∆η  ∆η  ∆η  ∆η  x ∆φ∆φ∆φ∆φ = 0.05 x 0.05

26 Radiation lengths
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CMS HCAL

Endcaps: 

Αbsorber  - 8 cm

Lateral segmentation:

∆η  ∆η  ∆η  ∆η  x ∆φ∆φ∆φ∆φ = 0.087x0.087

Longitudinal:

HE1(1 layer),

HE2(17 layers)

Barrel: (ΗΒ)(ΗΒ)(ΗΒ)(ΗΒ)

Αbsorber plates - 5 cm thick

Lateral segmentation: ∆η  ∆η  ∆η  ∆η  x ∆φ∆φ∆φ∆φ = 0.087x0.087

Longitudinal: HB1(1 layer), HB2(17 layers)

Sampling Calorimeter

Absorber – copper alloy

Active elements –

4mm thick scintillator tiles

HB, HE, HO

HO – lateral segmentation as in HB

2 layers;0< η <0.4 – 3 layers
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CMS Calorimeter System

Barrel:

4 longitudinal read-
outs

ECAL, HB1,HB2,HO

Endcaps:

3 longitudinal read-
outs

ECAL,HE1,HE2

Calibration: ECAL – e-beam scan and in situ calibration – Z � e+e-

HCAL calibration – several wedges with hadron and muon beams

Transfer of the calibration to the other wedges with radioactive source.

In situ calibration – obligatory (response depends from magnetic field)

Single track hadrons, photon + jet, dijet resonances W �jj, Z �bb, Z � ττττττττ
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Energy reconstruction

�Hadron calorimeters –

�Intrinsic (stochastic) fluctuations

�Sampling fluctuations

�EM shower – Evis ~ Einc

�Hadron shower:

E = EEM + Eh 

Eh =  Ech + En + Enuc

�Response for e and hadrons is

different – e/π π π π > 1

�Non-compensating Calorimeters

�Response depends on the type of    
the particle – it  is different for e, 
hadrons and jets

Energy reconstruction

Most common approach (SM):

wj are determined by minimization of 
the width of the energy distribution 
with additional constraint

<E> = Einc

Linearity:

Test – MC events, e and ππππ

E = 5,10,20,50,100,200,300,500 GeV

Jets - E = 30,50,100,200,300,500 GeV

wj are energy dependent
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Energy reconstruction

Non-Gaussian tails

Non linear response

Standard Method
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Energy reconstruction

Energy dependent weights

- linearity is restored

- no improvement in the energy       
resolution

� In SM –weights are sensible to the 
average of fluctuations

� Different correction factor to each 
event

� Suppression of the EM signal

� Different weighting methods – H1

Slight improvement – constant term
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Energy reconstruction

� To ensure the best possible measurement of the energy

�To every individual event – different correction factor

�Using the lateral and longitudinal development  - EM 

part of the hadron shower should be estimated

�The type of the particle (electron, hadron, jet) should 

be determined

� We need a method

�Able to deal with many parameters

�Sensitive to correlation between them

�Flexible to react to fluctuations

� Possible solution – Neural Network
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Neural Network

Powerful tool for:

�Classification of particles 

and final states

�Track reconstruction

�Particle identification

�Reconstruction of invariant 
masses

�Energy reconstruction in 
calorimeters
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Neural Network

�Multi-Layer-Feed Forward network consists of:

�Set of input neurons

�One or more layers of hidden neurons

�Set of output neurons

�The neurons of each layer are connected to the ones to the subsequent layer

�Training

�Presentation of pattern

�Comparison of the desired output with the actual NN output

�Backwards calculation of the error and adjustment of the weights

�Minimization of the error function
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Neural Network
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Energy reconstruction with NN

� Two possible approaches

� NN directly determined the energy dissipated in the calorimeter

� GILDA – imaging silicon calorimeter

� Two steps – first rough classification in of the energy – 6 
groups, second step – dedicated net proceeds to discriminate 
among the different energy values – discrete output – weighted  
average

� ATLAS – determine energy correction factors

� Recurrent neural network with nearest neighbour feedback in 
the input layer and a single output – works satisfactory

� Second approach

� Adjustment of the weights wj on event by event basis
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Energy reconstruction with NN

� Data processing in two steps

� Identification of the type of the 
incident particle

� mainly EM interacting particles – e, 

γ γ γ γ 

� Mainly strong interacting particle –
hadrons

� Jets

� Muons

� Energy reconstruction – with 
dedicated NN for each class of 
showers

� Second level NN has four subnets for 
the for longitudinal read-outs
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Energy reconstruction with NN

� Inputs – 30

� Erec – SM with w for 300 GeV

� , i = 1,2,3,4 ,

� 13 inputs – ECAL

� 3x4 inputs HCAL

� Additional neurons – learning

� hidi – I(O) = O ; A(I) = I

� Out – sums up signals A(I) = I

� u,v and w – like all other 
weights

� oi – takes into account shower 
fluctuations

(η,φη,φη,φη,φ) – cone ∆∆∆∆R = 0.43

ECAL – 41x41 crystals

HCAL – 7 x 7 towers

Summing energies in 
concentric squares
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Results

� Feed-forward neural network - 30 inputs

� Stuttgart Neural Network Simulator SNNS

Particle separation with NN

30 – inputs, 4 – outputs for e.h,jet, µµµµ

� Particle identification –two methods

� Using suitably chosen cuts 

� Shower pseudo radius – to separate e 

� Single hadron showers from jets

� Rsh < 0.07

� EECAL corresponds to MIP

� mR > 0.332, 

� R2 > 37.5,  R2 = EHCAL / EECAL
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Results

NN performance

Energy distribution - Gaussian

NN performance – energy is well reconstructed

jet � h                                 jet ���� e
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Results

Neural Network performance

Energy resolution for jets                             Linearity
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Conclusions

� NN has been applied for reconstruction of the energy of 
single h and jets

� The NN performs reconstruction in two steps

�Determination of the type of shower initiator – e, 
hadron, jet

� If the shower is misidentified, it energy is reconstructed 
correctly

� NN evaluates the shower energy

�The energy spectra have Gaussian shape and are free 
of tails

�Significant improvement of the energy resolution and 
linearity
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